Maturity Matrix - Reliability Engineering | Drococc | Reactive | Emorging | Proactive | Excellent | | | |---|---|---|--|--|--|--| | Process | No process or procedure in place | Emerging Informal process in place, or process in place only for regulatory compliance | A formal process is established and well understood. Process includes flow charts, step definitions and responsibility matrix | Excellent Process effectiveness drives business results. Data is shared and used for decision-making. Process audits drive improvements | | | | Asset Data
Collection
(ADC) | No data base exists or not all assets are in the database If assets exist, ≤25% of assets have a manufacturer and model # identified Users of system are not familiar with asset data collection, data fields, or requirements Data fields and requirements are suitable for use | Over 85% of assets are in the database ≥50% of assets have a manufacturer and model # identified Users of system are familiar with asset data collection data fields and requirements Data fields and requirements are suitable for use | A documented asset identification process exists; over 95% of assets are in the database and users collect data effectively 100% of the assets have a manufacturer and model # identified 50% of assets are classified and asset-type characteristics are populated Process addresses most data sources and extracts relevant data into intermediate storage | A documented asset identification process exists; 100% of assets are in the database Periodic audits of asset data performed to ensure effectiveness 100% of assets are classified with asset-type characteristics populated Process addresses all data sources and extracts relevant data into intermediate storage | | | | Asset
Hierarchy
(AHD) | Hierarchy established at the highest level only (production line) or partially implemented (≤50%) Very little information exists for the assets in the database or is incorrect (≤50%) Costs and reliability metrics are not tracked to the lowest level defined (≤50%) | Hierarchy partially implemented (≥70%) with limited use Accurate data associated with each asset exists in the database (≥70%) with reactive audits to maintain accuracy Costs and Reliability metrics track to the lowest level defined (≥70%) | Hierarchy policy aligned with a consistent standard (ex. ISO 14224) and hierarchy levels are consistently applied across the asset base (>95%) Accurate data associated with each asset exists in the database (≥85%) with ad hoc audits to maintain accuracy Costs and reliability metrics track to the lowest level defined (≥85%) | Hierarchy levels are consistently applied across the asset base (100%) Accurate data associated with each asset exists in the database (≥85%) with scheduled periodic audits to maintain accuracy Costs and reliability metrics track to the lowest level defined (100%) | | | | Asset Criticality (ACA) | 0% equipment formally ranked "Critical" equipment is identified based on
"tribal knowledge" If criticality exists, it is not documented Criticality rankings are not approved | 50% of equipment ranked for criticality Critical equipment ranked informally, based on subjective criteria or limited to high-low-medium Some criticality rankings are loaded in the system (≥70%) Criticality rankings are approved by maintenance | 100% of equipment ranked for criticality A documented risk-based ranking process exists and a cross-functional team determines asset criticality 100% of criticality rankings are loaded in the system Criticality rankings are approved by a reliability engineer | All assets are ranked with less than 10% ranked in highest category; scheduled audits maintain accuracy Continuous improvement is evident within the criticality process Criticality ranking is effectively used Criticality rankings are approved by an asset management team | | | | Control
Strategy
Development
(CSD) | Asset strategy limited to original equipment manufacturer (OEM) recommendations, are informally identified, and no failure modes and effects analysis (FMEA) Run to failure occurs but is not a specified, risk-based strategy | ≥50% of the most critical assets have strategies determined by FMEA ≥50% mid-level criticality assets have OEM and historical based PMs | 100% of the most critical assets have strategies determined by FMEA 100% OEM and historical based maintenance are used for mid-criticality assets Lowest criticality level assets are considered for a 'run to failure' strategy | 100% of assets ranked to best practice standards
and have an effective asset strategy Maintenances strategies are evaluated for
continuous improvement using effective data
analysis | | | | Maintenance
Strategy
Development
(MSD) | Detailed maintenance plans do not exist or are limited Critical instrumentation is not calibrated Informal lubrication program exists Condition-based maintenance activities do not exist. Majority of PMs are calendar based (i.e. monthly, quarterly, etc.) | Maintenance plans are built using an informal, ad hoc process and lack sufficient detail or are limited to that provided by the original equipment manufacturer (OEM) Critical instrumentation is calibrated Critical equipment is covered (where applicable) with a lubrication program with compliance ≥70% ≥25% of maintenance strategies contain condition-based evaluation criteria | Detailed, step-by-step maintenance job plans exist and include operating parameters, craft skill, parts, tools and materials required to complete maintenance tasks A formal, documented, critical instrumentation calibration program exists with compliance ≥90% Critical equipment is covered (where applicable) with a formal, documented lubrication program consistent with "best in class standards" with compliance ≥70% ≥50% of maintenance strategies contain condition-based evaluation criteria, including PdM technologies | All job plans are detailed and comprehensive. There is evidence of PM evaluations and continuous improvement A documented critical instrumentation calibration program exists with compliance ≥90% A "best in class standards" lubrication program is in place with compliance ≥90% ≥80% of feasible PMs are condition-based. New equipment strategies and PMs are developed before assets are in operation | | | ©Life Cycle Engineering (LCE) ATLAS IG RE Maturity Matrix.Docx ## **Maturity Matrix - Reliability Engineering** | Process | Reactive | Emerging | Proactive | Excellent | | | |---|---|---|--|--|--|--| | Bill of
Materials
Creation
(BOM) | Bill of materials (BOMs) do not exist, partially exist, or inaccuracies render them useless As new critical equipment is added BOM additions are not are developed BOM creation considered to be a maintenance activity | BOMs exist only for critical equipment with some accuracy ≥70% As new critical equipment is added BOMs are developed on an ad hoc basis typically by maintenance planners. BOMs for non-critical equipment might be developed as needed BOMs are limited to parts in stock | Top criticality ranked equipment have complete
BOMs place and contained within the database As new equipment is added, BOMs are
developed as part of the installation project for
both critical and non-critical equipment BOMs identify both stock and non-stock parts | All equipment (100%) have complete BOMs A formal, documented and audited BOM process exists and addresses management of change Metrics tracked with documented trend improvement over time and 3 yr. history of trend results documented | | | | Critical Spares
Evaluation
(CSE) | Minimal evidence of parts identified as "critical" in the system Critical items are not identified in the system No process exists for identifying critical spares There are no rules regarding parts substitutions | Critical spares are reactively identified typically after a severe event Critical items are clearly identified in the system Critical spares are determined informally. Typically based on emotion and no data Parts substitution decisions are informal and ad hoc | 100% critical equipment spare parts identified in the system Critical items are identified in the system with a well-defined min/max level, required storage maintenance, and a review process Critical spares are determined using risk-based criteria (e.g. lead time, failure risk, carrying costs, failure detectability, asset criticality, etc.) Documented parts substitution rules are followed. Specific parts are identified as "do not substitute" | Spare parts requirements for all assets have been identified All spare parts are identified in the system with a well-defined min/max level, required storage maintenance, and a review process Critical spares are determined using a variety of risk-based criteria and continuous improvement is evident Substitution, evaluation, stock levels, and storage requirements are routinely audited for compliance and improvements implemented. | | | | Loss
Elimination
(LEL) | Major losses in production and costly events are investigated as they occur No formal root cause analysis (RCA) program When an informal RCA is conducted, corrective actions are rarely implemented and/or tracked Bad actor lists do not exist | Production losses are tracked with limited accuracy Major losses and cost events are tracked and receive an RCA. Triggers are emotionally driven Some corrective actions implemented and validated Bad actor lists may exist but don't drive RCA activities | Production losses tracked daily and accurately Major losses and cost events are tracked and receive an RCA based on a formal, documented risk-based trigger system Corrective actions are implemented and regularly verified Bad actors tracked based on frequency and cost; costly events receive a formal RCA | All losses measured, tracked and published in Pareto charts with associated financial costs Monthly review of results, corrective actions and formal reports Continuous improvement trends are published and an asset management team reviews losses and bad actor reports High frequency bad actors are addressed and remediated | | | | Root Cause
Analysis
(RCA) | No formal training in RCA exists No RCA process exists Bad actors are not being addressed No defined RCA tools | Informal RCA facilitators exist Informal RCA process exists and is sometimes followed RCA tools limited to 5 why and fishbone diagram Major losses and bad actors identified with an RCA Corrective actions typically implemented and sometimes validated | Some formally trained RCA facilitators A formal, documented RCA process exists with a defined set of triggers A wide variety of RCA tools are used as applicable Most corrective measures are documented, approved, implemented, and verified | All facilitators formally trained in RCA RCA tools use is audited for effectiveness and a continuous improvement program exists All corrective actions are recorded, reviewed, approved, funded, tracked to completion and verified effective | | | | PM
Optimization
(PMO) | PMs are not reviewed or evaluated for effectiveness | PM review and optimization happens informally Process is informal and may include replacing a PM task with a condition-based task PM task details are insufficient for consistent execution and have no connection to specific failure mode | PM optimization is a formal, documented process Process includes replacing PM tasks with condition-based tasks PM task details are sufficient for consistent work execution and address a specific failure mode | PM optimization process is measured based on reviewing failure data, uptime, and cost 90% of PMs completed on time (10% rule) PM optimization chooses the appropriate task based on the lowest total cost of ownership PM task details show evidence of employee feedback and continuous improvement | | | ©Life Cycle Engineering (LCE) ATLAS IG RE Maturity Matrix.Docx ## **Maturity Matrix - Reliability Engineering** | Process | Reactive | Emerging | Excellent | | | |------------|---|--|---|---|--| | Management | Capital project and major manufacturing process | MOC requirements are documented with ≥50% | 100% of changes comply with MOC | 100% of MOCs approved before changes are | | | of Change | changes informally reviewed | compliance | requirements | implemented | | | (MOC) | The awareness of the need for a formal MOC | Personnel are not trained in MOC and its | Personnel are trained in MOC and its application | Personnel are proficient in MOC application | | | | program does not exist | application | The Reliability Engineer, EHS, Quality, and | MOC includes reviewing pre-start-up metrics | | | | No defined approval levels | MOC review and approval levels are limited to | Engineering personnel review and approve | All drawings, maintenance plans, and BOMs are | | | | Documentation and drawings are not updated | engineering personnel | MOCs related to facilities and assets | revised as metrics are reviewed | | | | | Inconsistent documentation and approvals (does | All drawings, maintenance plans and BOMs are | | | | | | not meet OSHA 1910) | revised as required | | | | | OEE | Unplanned
Downtime | Maintenance cost as % RAV | OEE | Unplanned
Downtime | Maintenance cost as % RAV | OEE | Unplanned
Downtime | Maintenance
cost as % RAV | OEE | Unplanned | Maintenance cost as % RAV | |-------------|-----------------|-----------------------|---------------------------|-------------------|-----------------------|---------------------------|-------------------|-----------------------|------------------------------|-----------------|-----------|---------------------------| | Key | | Downtime | COSt as % RAV | | Downtime | COSL as % RAV | | Downtime | COSL as % RAV | | Downtime | COSL dS % KAV | | performance | <65% batch | | | 65-75% batch | | | 75-85% batch | | | >85% batch | | | | • | <70% discrete | >6% | >7% | 70-80% discrete | 4-6% | 5 – 7% | 80-90% discrete | 2-4% | 3.7 – 5% | >90% discrete | <0.5 – 2% | 0.7 – 3.6% | | | <75% continuous | | | 75-85% continuous | | | 85-95% continuous | | | >95% continuous | | | ©Life Cycle Engineering (LCE) ATLAS IG RE Maturity Matrix.Docx